COMP 520 - Compilers

Lecture 16 — Code/Data Path Analysis

Reminders

* |If you submitted PA3 late, make a private post on
Piazza so we can determine an appropriate grade.

e Submit to Partial tests, and your first submission to
Hidden tests implies you need a grade.

* Midterm 2 on next Thursday, 4/11

COMP 520: Compilers —S. Ali

Reminders (2)

* As of Lec 15, you have everything you need to do PA4.
e Start sooner rather than later.

* Midterm 2 on next Thursday, 4/11

COMP 520: Compilers —S. Ali

Compiler
Optimization

Dataflow Analysis

Data Liveness Expr Liveness

t
TODAY

Compilers are. magic

* This phrase is humorous.

* For the compiler developer, not so much.

* What exactly is so mag?cal about a compiler?

* It has the ability to nearly ignhore how the programmer
wrote code, and instead does something equivalent and
more optimized. (not always a good thing)

COMP 520: Compilers —S. Ali

Today

* Data and Expression Liveness analysis

* Algorithms to analyze data usage and memory
dependencies

Goal

* Reduce memory usage and instruction count.

COMP 520: Compilers —S. Ali

Motivation

FE#include <stdio.h>
#include <stdlib.h>
#include <intrin.h>

*VVariable b and c are never

used at the same time - lmint somefn() §
. 6 int x, vy;
* Can save space by not keeping [ccanf. s("%d %d", &x, &y):

both in memory if (__popent(y) == 1) {

int b = x + x;

while ((x % y) != 0)
++X;

y = b + b;

}

int ¢ = x * vy,
return c;

COMP 520: Compilers —S. Ali

Motivation (2)

* We have two int variables, but
e after line 3, numBytes is never
| int numBytes = r*ech...,bu-F,...); used agaln

if(numBytes > @) {
int code;
sscanf(buf, "%d",&code) ;
return code;

— * Ask the developer to change

the code?

COMP 520: Compilers —S. Ali

Motivation (3)

int numBytes = recv(...,buf,...); ¢ BUt we NOwW have d prObIem, the

i code; variable name “numBytes” does
e R not actually describe its function
ceturn -1, * To support good coding
practices, we will need to solve
e . how to reduce memory
Ry consumption without asking the
L = developer to change their

return -1;

programming habits.

COMP 520: Compilers —S. Ali

Problem Statement

* Programmers create variables whenever.
* They do not want to reuse variables that are available.

* On limited compute capacity machines, we cannot
afford to waste memory.

10
COMP 520: Compilers —S. Ali

Scoped Data Liveness

COMP 520: Compilers —S. Ali

Scoped Data Liveness

* Recall: when a local variable is declared,
create stack space for it (simple PA4, Lec14-15)

* |dea: whenever a scope closes, reclaim stack space.

COMP 520: Compilers —S. Ali

12

=)

«_

Scoped Data Liveness (2)

* |dea: whenever a scope closes, reclaim stack space.

push O # Create Stack Space &x = rbp-8

printf("%d",x)

13
COMP 520: Compilers —S. Ali

=)

«_

Scoped Data Liveness (3)

* |dea: whenever a scope closes, reclaim stack space.

push O # Create &y = rbp-16

printf("%d",x)

COMP 520: Compilers —S. Ali

14

)

=

=

Scoped Data Liveness (4)

* |dea: whenever a scope closes, reclaim stack space.

orintf("%d", x) : add rsp,8 # Reclaim y’s space
/o s X),

15
COMP 520: Compilers —S. Ali

Scoped Data Liveness — Not Optimal

* Why is this not enough?

COMP 520: Compilers —S. Ali

int fn(int x
int a
int b . _ . .
int c * At this point, variable a is
return c: no longer used.

)
X
g
b

* Thus, some other
strategy can be better.

17
COMP 520: Compilers —S. Ali

When you have really long methods..

* If the programmer writes bad
code, then sure, we have no
obligation to make sure it runs.

int =
int =
int =
int =
int
int

e But you can’t dictate programming
habits, and what if some methods
just end up being very
complicated?

'
3
'
3
'
3
'
3
'
3
'
3

3
b
3
d
2
=

* Also, we would want our compiler
to work even if others don’t.

18
COMP 520: Compilers —S. Ali

Scoped Data Liveness Overview

Overview:
* Reclaim stack space when a scope ends.

* Not optimal (too coarse-grain).

* In PA4: expected to clean up the stack to some
degree, and scoped liveness fulfills that requirement.

* We now study better techniques.

COMP 520: Compilers —S. Ali

19

Definition: Live Variable

e Let’s formalize data liveness.

pefn. | A variable x is live before an instruction if x is assigned a
value before that point, and an instruction will use x after
that point.

* Liveness is overloaded. Liveness also refers to ensuring lock
requests are eventually satisfied.

* Instead, we call it Data Liveness, which is
a part of Dataflow Analysis.

20
COMP 520: Compilers —S. Ali

Optimality Concerns

* Data Liveness Analysis may overly
designate variables as “live”.

* Better than the opposite.

* Very difficult in some languages.
Example: access variables by
memory offsets.

Output:

COMP 520: Compilers —S. Ali

E#include <stdio.h>
#include <stdlib.h>
#include <intrin.h>

Hclass A {
private:
int Xx;
public:
= void output() {
printf("%d\n", x);

Fvoid main() {
A a;
(int)&a = 520;
a.output();
!
i |
Microsoft Visual Studio Debuy X +

5208

21

)

=

Control Flow Graphs (CFGs)

A super unfortunate acronym.
CFG in parsing is context-free grammar.
CFG in code generation is a control flow graph.

COMP 520: Compilers —S. Ali

22

Basic Control Flow Graph

)

AssignStmt

CallStmt

WhileStmt
N _

AssignStmt

ReturnStmt

COMP 520: Compilers —S. Ali

Exploded Flow Graph

Fall-Through -
Edges

AssignStmt

{

CallStmt

{

WhileStmt

|

COMP 520: Compilers —S. Ali

AssignStmt

{

ReturnStmt

24

CFG Edges

Vertex = Operation
(Instruction/Concrete AST)

In-Edge = Directed edge going to
the vertex

Out-Edge = Directed edge going out
of the vertex

Successor/Predecessor = All vertices
connected by an out/in-edge

In-Edges

AN

Operation

, Defn. E

Def: in(v) = Set of all variables live
at In-Edges (before vertex v)

Def: out(v) = Set of all variables live
at Out-Edges (after vertex v)

COMP 520: Compilers —S. Ali

RN

Out-Edges

25

Define Data Liveness at Edges

(before and after)

* Consider a motivating
example:

int x =y + 1
(Assume y never used again)
* So both x and y can use:

[rbp-8]

COMP 520: Compilers —S. Ali

26

THE UNIV
||

_—

Bionstruct CFGW

<

‘Define Data Liveness at Edges (2)

Live: {vy }

* Consider a motivating
example:

int x =y + 1
(v never used again)

* So both x and v can use:
[rbp-8]

COMP 520: Compilers —S. Ali

??

tmp =y *

\4

Live: { tmp }

2?

tmp:=tmp+1

\4

Live: { tmp }

2?

X :=tmp

\4

Live: { x }

Note the
addition of
Iltemp”
variables.

This is a
part of
Dataflow
Analysis.

27

THE UNIV
||

= ""Deﬁne Data Liveness at EdgES (3)

Eenerate Code | | Live: {y}

* Consider a motivating

mov rax,[rbp-8] rax =y
example:
| Live: {rax}
int X — y + 1 inc rax rax :=rax+1
' . Temporary
(y never USEd agaln) 1 Live: { FaX } variables
*So both x and y will use: * ML
| mov [rbp-8],rax X := rax e
[rbp-8] “-?.— eventually.

| Live: {x}

28

COMP 520: Compilers —S. Ali

Can visually see it, but how can we
detect such optimizations?

...\We will need more tools!

mov rax,[rbp-8] rax :=y
inc rax rax :=rax+1 — inc [rbp-8] | x:=y+1
mov [rbp-8],rax X :=rax

optimizations until you are

Don’t worry about such
done with PA4

29
COMP 520: Compilers —S. Ali

More Definitions

Set: use(v)

e use(v) = The set of variables
used by vertex v.

—_

cEgv=“z=x+y”
e use(v)={x,vy}
e def(v)={z}

COMP 520: Compilers —S. Ali

Set: def(v)

» def(v) = The set of variables that
are defined by vertex v.

 Somewhat of a misnomer, it is
variables whose values are
assigned by the vertex v.

cEgv=“z=2*2"
e def(v)={z}
e use(v)={z}

30

Constraints

use(v) € in(v)
* Why?

out(v) \ def(v) S in(v)
* Why?

V s : s € successor(v) ::in(s) S out(v)
* Why?

COMP 520: Compilers —S. Ali

v:veV : ,
e Constraints (2)

10 = use(v) € in(v)
* I[f we use the variable, it was live before the vertex is entered.

11 = out(v) \ def(v) S in(v)
* |If a variable that we didn’t assign is live after v, then
it was live when we enter v.

12 = V s:s € successor(v) ::in(s) € out(v)
* |f a variable is live when entering a successor, then it must be
live when exiting the vertex.

32
COMP 520: Compilers —S. Ali

YVv: vel :

Other Languages

10 = use(v) € in(v)
* |f we use the variable, it was live before the vertex is
entered.

* Not always possible to determine in other languages

* Compile-time error in Java (save for PA5) because
X is uninitialized.

int Xx;
inty =6 - 3,
‘#((&y) — B) =V, Microsoft Visual Studio Debwy X +

printf("%d\n", x);

33
COMP 520: Compilers —S. Ali

YVv: vel :

Goal

10 = use(v) € in(v)
11 = out(v) \ def(v) € in(v)
12 = V s:s € successor(v) :: in(s) € out(v)

Can actually use these constraints to our advantage!

COMP 520: Compilers —S. Ali

34

'terative Data Liveness Analysis

COMP 520: Compilers —S. Ali

Initialization (Base Case)

eStart: G = (E, V)
* |nitialize:
YVo:v€EV in(v) :=0Q
Vv:v€EV out(v) =0
Vv :v €V ::Determine def(v), use(v)

* Note: constraints are probably not yet satisfied.

COMP 520: Compilers —S. Ali

36

[terative Step

e Evaluate:

’ OUt(v) = UsEsuccessor(v) in(s)
* What is this doing?

COMP 520: Compilers —S. Ali

37

'terative Step (2)

e Evaluate in-order:

’ OUt(v) = UsEsuccessor(v) ln(S)
* |f a successor needs a live variable, then it must be live
when exiting v

COMP 520: Compilers —S. Ali

38

'terative Step (3)

*in(v) := use(v) U (out(v)\ def(v))
* What is this doing?

'terative Step (4)

*in(v) := use(v) U (out(v)\ def(v))
* If v uses the variable, it must be live upon entry

* Union with: variables that must be live afterwards, except
the variables that are set by v.

* We don’t need such assigned variables live, unless we use their
previous value.

40
COMP 520: Compilers —S. Ali

Fixed-Point

* Stop when:
e [3 = All constraints met (I0 AI1 AI2) = STOP
* |4 = All sets in/out do not change — STOP

* When done by 14, I3 is too, so only check in/out sets.
* Curious why? See COMP-735 (Spring 2025)
* Use well-founded closure rule, eventually, 4 — I3
* Analyzing data liveness algorithms not a part of this class

COMP 520: Compilers —S. Ali

41

Example:

y = 0,
while (

= N X
|

return

N DN X = XX

COMP 520: Compilers —S. Ali

= 10, z

>0)
+ 1,
- 1;
* 7,
/Y5

{

if(x<0)

y=w+1

Xx=x-1

z2=2%2

{

w=z/y;

returny

Initialization.

Determine sets: use/def

Assign all in/out to @

43
COMP 520: Compilers —S. Ali

lteration 1

for(vevV) {

yzout(v) = Us::: in(s)

%in(v) := use(v) U (out(v) \ def(v))
J

If done in-order, then most of the first
iteration is easy. Watch out for —_—

44
COMP 520: Compilers —S. Ali

)

=

«_ \

Iteration 2

for(vevV) {

yzout(v) = Us::: in(s)

%in(v) := use(v) U (out(v) \ def(v))
J

Watch out for checking all successors: J

COMP 520: Compilers —S. Ali

45

)

=

=

i1

if(x<0) D

'teration 2 (2)

for(vevV) {

yzout(v) = Us::: in(s)

%in(v) := use(v) U (out(v) \ def(v))
J

< |*

+
[EEY

S H RS

[N

N

I
*

N

=
I

_N4_N4—><4—§

S~
<<

FIRIRTE

> | returny

46
COMP 520: Compilers —S. Ali

?

)

=

=

lteration 2 (3)

for(vevV) {

yzout(v) = Us::: in(s)

%in(v) := use(v) U (out(v) \ def(v))
J

47
COMP 520: Compilers —S. Ali

)

=

=

'teration 2 (4)

for(vevV) {

yzout(v) = Us::: in(s)

%in(v) := use(v) U (out(v) \ def(v))
J

48
COMP 520: Compilers —S. Ali

)

=

=

lteration 2 (5)

for(vevV) {

yzout(v) = Us::: in(s)

%in(v) := use(v) U (out(v) \ def(v))
J

Note: no change here

49

COMP 520: Compilers —S. Ali

Iteration 3

for(vevV) {

yzout(v) = Us::: in(s)

%in(v) := use(v) U (out(v) \ def(v))
J

COMP 520: Compilers —S. Ali

50

[teration 4 g:mxgm —

for(vevV) {

yzout(v) = Us::: in(s)

%in(v) := use(v) U (out(v) \ def(v))
J

+
[EEY

S H RS

<
I

[N

N

I
*

N

133 86 8

S~
<<

_Nq_l\)q_xq—é

&

> | returny

?

COMP 520: Compilers —S. Ali

)

prm—— |

lteration 5 E:mxgm —

forC(veV) { xyz‘“’”&
out(v) = Us::: in(s) !
in(v) := use(v) U (out(v) \ def(v)) x x=x-1 ﬂ
| |
x z=2%z ﬁ
y
Fixed-Point Reached! i w=z/y;m
Oh goodness, what a beautiful 1.. '
— returny

thing we have evaluated!

?

COMP 520: Compilers —S. Ali

% if(x<0) |<—

— | returny ‘

COMP 520: Compilers —S. Ali

Observation 1.

e Parts of the code exist where
variable “w” is not needed

53

)

=

= THE UNIVERSITY
of NORTH CAROLINA
L. 1 > at CHAPEL HILI

y

' Shown:

Data lifetime Graph

No lifetimes are
disjoint.

— | returny ‘

54
COMP 520: Compilers —S. Ali

Y | returny

COMP 520: Compilers —S. Ali

LIFETIME

Consider the
modifications in
vellow.

Note the disjoint
lifetime of e and w.

55

This is a similar, earlier problem

y =0, x=10; z =2, w=0;, y=0, x=10; z =2, w = 0;
while(x > 0) { while(x > 0) {
y =w + 1; y =w + 1;
X = x - 1, = x - 1,
int e = 2; = 2, N,
Z = e * 7, “'IR!NI"’ = w * 7, Z:¢J|
w=2z/79; =z /v,
J J
return v, return v,

COMP 520: Compilers —S. Ali

56

How many variables are needed?
S

Variables: 5 Variables: 4
Concurrently Alive: 4 Concurrently Alive: 4

y=0; x =10, z = 2; w = 0, y=0; x =10, z = 2; w = 0;
while(x > 0) { while(x > 0) {

y =w + 1, y =w + 1,

X =x - 1, X =x - 1,

inte2;“w2;

Z = e %k z; Z = W * z;

w=2z/Y; w=2z/Y;
J J
return v; return v;

57
COMP 520: Compilers —S. Ali

Primary Observation

Variables with disjoint lifetimes can utilize
the same memory space.

* Thus, the code in the earlier example can
be done using 4 registers.

* Question: can we keep everything in
registers and commitw, x, y, z after
the loop ends?

COMP 520: Compilers —S. Ali

N ® ® X = X = X
>~ % I+ N 0

<

< N DN OO

v o O

N—"

—

58

Side Observation - Multithreaded

* Question: can we keep everything in registers and commit w,
X, vy, z afterthe loop ends?

* Only if your target machine has no concurrent threads
accessing the memoryofw, x, y, z (eisalocal, butthe
other variables could have been global)

* Multi-threaded dataflow analysis is possible. Very helpful when
using OpenMP/CUDA/barriers/fences. Optimization is huge.

e Seen in COMP-735, but in the context of program states and
transactions. Also in COMP-633, but not sure when it is offered next.

Need implicit or explicit commit
, _ points for proper analysis 59
COMP 520: Compilers —S. Ali

Available Expressions /
Expression Lifetime Analysis

COMP 520: Compilers —S. Ali

Consider the following code:

s = a *+ b;

m -= a * b,

while(m > a)
a :=a+ 1;
s :=a t+ b;

COMP 520: Compilers —S. Ali

s = g

m .= a

while (
a
S

COMP 520: Compilers —S. Ali

Construct the CFG

m:=a*b

= o

ifm<a

a:=a+1l

s:=a+b

|} return

When data is invalidated, so are
all expressions utilizing that data.

. 1 . s:=a+b
S .= a t Db, -lm-
b

| !
m .= a ¥ p, m:=a*
. {a+b, a*b }

while(m > a) { l

a =3 + 1; |”tmsa {a+b,a*b}

g .= g + b, a=a+1l return
} ' *

s:=a+b
i

63
COMP 520: Compilers —S. Ali

)

—,

When data is invalidated, so are
all expressions utilizing that data.

s ‘= a t+ b;

m := a * b,

while(m > a) {
a :=a*t 1,

s :=a + b;

Note: we lost a*b here: /

COMP 520: Compilers —S. Ali

{a+b, a*b }

return

64

)

prm—— |

When data is invalidated, so are
all expressions utilizing that data.

s :=a+tb; S:=a+b-£5-
b

m := a % b; +
m:=a*
Whlle(m > a) { lv {a+b, a*b }
a ‘=a*tl; ifm<a
s st |-mnﬂ
} | ‘ a:=a+1l return
s:=a+b
o)

65
COMP 520: Compilers —S. Ali

Expression Liveness

* Very useful so that an expression does not have to be
re-evaluated.

* Let’s look at that example earlier with one minor
modification.

COMP 520: Compilers —S. Ali

66

)

=

No need to re-evaluate a+b, because s is an alias.

oy
||

a + 1; — ifm<a

2 4 b e

} a:=a+1l z=a+b
7z = a + b; ! ‘

s:=a+b return

n
I

Evaluate a+b?? NO!

67
COMP 520: Compilers —S. Ali

Another Description: Data Liveness

* Each vertex generates some “facts”

e Each vertex invalidates some “facts”

e Data Liveness:

* geng(v) = use(v)
e Killj(v) = def(v)

*outq(v) = Uge(..)ing(s)
*ing(v) = geny(v) U (outd(v) \kill(v))

COMP 520: Compilers —S. Ali

Formal Description: Expression Liveness

* Each vertex generates some “facts”

e Each vertex invalidates some “facts”

* Expression Liveness:

* gen, (v) = expressions evaluated
e killo (v) = all expressions that contain def(v)

*ine(v) = anpredecessor(v) oute(p)
e out.(v) = gen.(v) U (ine (v) \ kill, (v))

69
COMP 520: Compilers —S. Ali

Termination in “Expression Liveness”

* Only re-evaluate vertices when a predecessor has a
change in the out set.

* Will eventually reach a fixed-point.

COMP 520: Compilers —S. Ali

70

Not so simple...

* Problem: what about more complex expressions:

(x +y) ==(z + w)
* We can keep many expressions alive:
*X+Yy, Z+WwW

*(x+y)==(z+w)

* Can keep not x, y alive, but instead keep a = x + y alive
ca==(z+w)

* Etc.

71
COMP 520: Compilers —S. Ali

)

=

|dea: Break up vertices

* Break every expression into small constituent
components. Generate extra code!

“(x+y)=(z+w)” = {xty, z+w }

" orgnal | ceneratecose |

a = X+y
c := (x+y) == (z+w)
b :=z+w

C := (x+y)==(z+w)
d:=z+w

return c+d

d:=z+w

COMP 520: Compilers —S. Ali

72

)

=

Apply Expression Liveness Analysis

* Replace expressions with aliased expressions

Apply Aliases

a = X+y a = X+y
c := (x+y) == (z+w)
b :=z+w b :=z+w
C := (x+y)==(z+w) c:=a==b
d:=z+w
d:=z+w d:=b

return c+d

COMP 520: Compilers —S. Ali

73

)

=

Apply Data Liveness Analysis

* Reuse variable names

a = X+y a = X+y

wwnnnn

C := (x+y) == (z+w)
b :=z+w = z+W

C := (x+y)==(z+w) c:=a==b l I
d:=z+w
d:=z+w d:=b I '

return c+d

74
COMP 520: Compilers —S. Ali

)

=

Apply Data Liveness Analysis

* Can eliminate redundant operations

oy Mases s | o o] cLd]_Now oo i
a = X+y a = X+y X := X+y

C := (x+y) == (z+w)

b :=z+w = Z+W y = z+W

C := (x+y)==(z+w) c:=a==b l X 1= x==y
d:=z+w I

d:=z+w d:=b

X 1= X+y
ret x

75

COMP 520: Compilers —S. Ali

Review

* Data Liveness Analysis:
e Reduces the amount of data you need in memory at any given time

* Somewhat related to minimizing register usage (minimizing
registers can be done after data+expression liveness)

* Expression Liveness Analysis:
* Can eliminate the need to re-process expressions

* Combined:
* They can eliminate instructions and reduce memory consumption.

COMP 520: Compilers —S. Ali

76

COMP 520: Compilers —S. Ali

More Optimization?

4 (o) Does that mean we
. need 4 registers?
1 (x)

77

More Optimization?

BTN Docs that mean we

need 4 registers?

X 1= X+y 4 (x,y,z,w)

VY = Z+W 4 (x,y,z,wW)

X = X== 2 (x,y) Nope! More optimization possible

X=Xty 2 (xy) that will be related to the target
ret x 1 (x)

architecture.

COMP 520: Compilers —S. Ali

78

X := X+y

y = Z+W

X = X::y

X 1= X+y

ret x

COMP 520: Compilers —S. Ali

Register Minimalization is not
Dataflow/Expression Analysis

4 (x,y,2,w)

4 (x,y,2,w)

2 (x,y)

2 (x,y)

1 (x)

mov rax,[X]
add rax,[y]
mov rcx,[z]
add rcx,[w]
cmp rax,rcx
XOr rax,rax

sete al

add rax,rcx

ret

1 (rax)

1 (rax)
2 (rax,rcx)
2 (rax,rcx)
2 (rax,rcx)
2 (rax,rcx)

2 (rax,rcx)

2 (rax,rex)

1 (rax)

Only needed two registers.
Why? Because x64 can do

“load memory” operations
inside of instructions!

79

See You Thursday!

* Intel C Compiler mini-case study.
* Generating multiple code paths.

* Rewriting user code to apply exotic optimizations.

e Remember, start PA4, some content from PA4 will be
tested on Midterm 2.

80
COMP 520: Compilers —S. Ali

End

=% THE UNIVERSITY
I I of NORTH CAROLINA
i at CHAPEL HILL

=% THE UNIVERSITY
I I of NORTH CAROLINA
i at CHAPEL HILL

=% THE UNIVERSITY
I I of NORTH CAROLINA
i at CHAPEL HILL

=% THE UNIVERSITY
I I of NORTH CAROLINA
i at CHAPEL HILL

	Slide 1: COMP 520 - Compilers
	Slide 2: Reminders
	Slide 3: Reminders (2)
	Slide 4: Compiler Optimization
	Slide 5: Compilers are magic
	Slide 6: Today
	Slide 7: Motivation
	Slide 8: Motivation (2)
	Slide 9: Motivation (3)
	Slide 10: Problem Statement
	Slide 11: Scoped Data Liveness
	Slide 12: Scoped Data Liveness
	Slide 13: Scoped Data Liveness (2)
	Slide 14: Scoped Data Liveness (3)
	Slide 15: Scoped Data Liveness (4)
	Slide 16: Scoped Data Liveness – Not Optimal
	Slide 17: Scoped Data Liveness – Counterexample
	Slide 18: When you have really long methods..
	Slide 19: Scoped Data Liveness Overview
	Slide 20: Definition: Live Variable
	Slide 21: Optimality Concerns
	Slide 22: Control Flow Graphs (CFGs)
	Slide 23: Basic Control Flow Graph
	Slide 24: Exploded Flow Graph
	Slide 25: CFG Edges
	Slide 26: Define Data Liveness at Edges (before and after)
	Slide 27: Define Data Liveness at Edges (2)
	Slide 28
	Slide 29: Can visually see it, but how can we detect such optimizations?
	Slide 30: More Definitions
	Slide 31: Constraints
	Slide 32: Constraints (2)
	Slide 33: Other Languages
	Slide 34: Goal
	Slide 35: Iterative Data Liveness Analysis
	Slide 36: Initialization (Base Case)
	Slide 37: Iterative Step
	Slide 38: Iterative Step (2)
	Slide 39: Iterative Step (3)
	Slide 40: Iterative Step (4)
	Slide 41: Fixed-Point
	Slide 42: Example:
	Slide 43: Initialization.
	Slide 44: Iteration 1
	Slide 45: Iteration 2
	Slide 46: Iteration 2 (2)
	Slide 47: Iteration 2 (3)
	Slide 48: Iteration 2 (4)
	Slide 49: Iteration 2 (5)
	Slide 50: Iteration 3
	Slide 51: Iteration 4
	Slide 52: Iteration 5
	Slide 53
	Slide 54
	Slide 55
	Slide 56: This is a similar, earlier problem
	Slide 57: How many variables are needed?
	Slide 58: Primary Observation
	Slide 59: Side Observation - Multithreaded
	Slide 60: Available Expressions / Expression Lifetime Analysis
	Slide 61: Consider the following code:
	Slide 62: Construct the CFG
	Slide 63: When data is invalidated, so are all expressions utilizing that data.
	Slide 64: When data is invalidated, so are all expressions utilizing that data.
	Slide 65: When data is invalidated, so are all expressions utilizing that data.
	Slide 66: Expression Liveness
	Slide 67: No need to re-evaluate a+b, because s is an alias.
	Slide 68: Another Description: Data Liveness
	Slide 69: Formal Description: Expression Liveness
	Slide 70: Termination in “Expression Liveness”
	Slide 71: Not so simple…
	Slide 72: Idea: Break up vertices
	Slide 73: Apply Expression Liveness Analysis
	Slide 74: Apply Data Liveness Analysis
	Slide 75: Apply Data Liveness Analysis
	Slide 76: Review
	Slide 77: More Optimization?
	Slide 78: More Optimization?
	Slide 79: Register Minimalization is not Dataflow/Expression Analysis
	Slide 80: See You Thursday!
	Slide 81: End
	Slide 82
	Slide 83
	Slide 84
	Slide 85

